
Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 1 of 31

Alfresco Enterprise on AWS: Implementation Guide

October 2013

(Visit http://aws.amazon.com/whitepapers/ for the latest version of this paper.)

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 2 of 31

Abstract

Amazon Web Services (AWS) provides a complete set of services and tools for deploying business-critical enterprise
workloads on its highly reliable and secure cloud infrastructure. Alfresco is an enterprise content management system
(ECM) useful for document and case management, project collaboration, web content publishing and compliant records
management. Few classes of business-critical applications touch more enterprise users than enterprise content
management (ECM) and collaboration systems.

This implementation guide is built on the Alfresco Enterprise on AWS: Reference Architecture whitepaper and is
intended for IT infrastructure administrators and DevOps personnel. This guide provides the specific steps and
techniques used to configure, deploy, and run an Alfresco server cluster (version 4.1) on AWS as described in the
Reference Architecture whitepaper. The included AWS CloudFormation template and information in this guide can be
modified to suit your specific business requirements or used as-is.

Introduction

Enterprises need to grow and manage their global computing infrastructures rapidly and efficiently while simultaneously
optimizing and managing capital costs and expenses. The computing and storage services from AWS meet this need by
providing a global computing infrastructure as well as services that simplify managing infrastructure, storage, and
databases. With the AWS infrastructure, companies can rapidly provision compute capacity or quickly and flexibly
extend existing on-premises infrastructure into the cloud.

Alfresco is an enterprise content management (ECM) platform for use by organizations interested in managing business-
critical processes that are related to document management, collaboration, secure mobile and desktop access to vital
files. The flexible compute, storage, and database services that AWS offers make it an ideal platform on which to run an
Alfresco deployment.

Implementing Alfresco Enterprise on AWS

This implementation guide provides a walkthrough of the sample template and describes both the AWS and Alfresco
implementation details used in the template to help create a secure, scalable, and highly available Alfresco
implementation on AWS. You can customize the template and accompanying scripts as needed to best meet your
business, IT, and security requirements. This guide is broken into three separate steps:

 Step 1: Sign up for an AWS account.

 Step 2: Perform prerequisite steps.
o Creating a key-pair to be used for instances that are launched
o Creating an Amazon Simple Storage Service (Amazon S3) bucket to be used as the storage repository

 Step 3: Launch the AWS CloudFormation template.
o Creating the required AWS infrastructure
o Creating a temporary setup instance to perform the initial Alfresco installation.
o Modifying the Alfresco configuration to enable clustering.
o Creating a new Amazon Machine Image (AMI) to be used as part of the auto scaling environment.
o Configuring the Auto Scaling and Elastic Load Balancing (ELB) services from AWS.

The completed environment implements the architecture represented in the following diagram.

http://media.amazonwebservices.com/AWS_Alfresco_Enterprise_Reference_Architecture.pdf
http://media.amazonwebservices.com/articles/alfresco/Alfresco-VPC-RDSMAZ-S3-AS.template
http://media.amazonwebservices.com/articles/alfresco/Alfresco-VPC-RDSMAZ-S3-AS.template
http://media.amazonwebservices.com/articles/alfresco/Alfresco-VPC-RDSMAZ-S3-AS.template

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 3 of 31

Figure 1: Alfresco Enterprise Reference Architecture

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 4 of 31

Step 1: Sign Up for an AWS Account

If you already have an AWS account, skip to the next step. If you don't already have an AWS account, use the following
procedure to create one.

To create an AWS account, go to http://aws.amazon.com, and click Sign Up Now. Follow the on-screen instructions. Part
of the sign-up process involves receiving a phone call and entering a PIN using the phone keypad.

When you create an AWS account, AWS signs up the account for all AWS services, including Amazon Elastic Compute
Cloud (Amazon EC2), which you will use in the next step. You are charged only for the services that you use.

Step 2: Perform Prerequisite Steps

There are two items in the deployment that are not created automatically by the AWS CloudFormation template. You
must create them before you launch the template:

 An Amazon EC2 key pair

 The Amazon S3 bucket used for shared storage

The Amazon EC2 key pair is used to provide SSH access to the instances that the AWS CloudFormation template creates.
If you already have an Amazon EC2 key pair that you want to use, you can skip this step. If you need to create a key pair
you can find instructions for doing so here: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

The deployment uses Amazon S3 as a shared storage repository in the Alfresco deployment. Amazon S3 buckets must be
globally unique, so it's not a good practice to dynamically create the bucket in the template. The bucket to be used is a
required parameter in the next step, when you launch the AWS CloudFormation template. The bucket must already exist
or the Alfresco installation will fail.

Information on how to create a new Amazon S3 bucket can be found here:
http://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html

Step 3: Launch the AWS CloudFormation Template

The AWS CloudFormation template creates the AWS infrastructure needed to deploy the Alfresco Enterprise cluster and
installs and configures the Alfresco Enterprise software. This section walks through all the steps in this process. You can
download the AWS CloudFormation template and follow along as the steps below describe the components of the
template.

Template Parameters
In order to customize the alfresco deployment based on your needs, the AWS CloudFormation template requires a
number of input parameters. The following table lists the parameters and describes their use within the template.

Parameter Default Description

KeyName <User Provided> Name of an existing Amazon EC2 key pair. All

instances launch with this key pair.

SSHFrom 0.0.0.0/0 Lockdown SSH access to a known IP or CIDR block.

(The default allows SSH to be accessed from

http://aws.amazon.com/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
http://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
http://media.amazonwebservices.com/articles/alfresco/Alfresco-VPC-RDSMAZ-S3-AS.templatehttp:/media.amazonwebservices.com/architecture/alfresco/Alfresco-VPC-RDSMAZ-S3-AS.template

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 5 of 31

anywhere.)

AZ1 <User Provided> First Availability Zone to deploy into.

AZ2 <User Provided> Second Availability Zone to deploy into

RDSInstanceType db.m1.small Type of Amazon EC2 instance for the Amazon RDS

instance

AlfrescoInstanceType m1.xlarge Type of Amazon EC2 instance for the Alfresco

instances

NATInstanceType m1.small Type of Amazon EC2 instance for the NAT instances

RDSUsername <User Provided> User name for the Amazon RDS database

RDSPassword <User Provided> Password for the Amazon RDS database

AlfrescoPassword <User Provided> Password for the Alfresco admin user

S3Bucket <User Provided> Name of the Amazon S3 bucket that Alfresco should

use to store data. Note: This bucket must already

exist before you launch the template.
Table 1: Template Parameters

Template Mappings
This template also makes use of the AWS CloudFormation Mappings feature to define some fixed parameters that can
be referenced as the template is being executed. There are three mappings. The first two are for the AMIs that are used
for the Alfresco servers and the NAT instances. The default settings are to use the Amazon Linux AMI in the region the
template is being launched in for the Alfresco and the Amazon NAT Instance AMIs for the NAT instances. If you have an
alternate preferred AMI, you can modify this mapping, but the NAT mapping must be to an AMI that is configured to be
a NAT instance. The third mapping is for the IP ranges. The default mappings in the table correspond to the mappings
depicted in the preceding architecture diagram. You can also modify this mapping, but it's important that the IP CIDR
blocks for the two Alfresco subnets be /28.

Key Value

us-east-1 ami-3275ee5b

us-west-1 ami-66d1fc23

us-west-2 ami-ecbe2adc

eu-west-1 ami-44939930

ap-southeast-1 ami-aa9ed2f8

ap-southeast-2 ami-363eaf0c

ap-northeast-1 ami-173fbf16

sa-east-1 ami-dd6bb0c0
Table 2: ALINUXAMI Mappings

Key Value

us-east-1 ami-c6699baf

us-west-1 ami-3bcc9e7e

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 6 of 31

us-west-2 ami-52ff7262

eu-west-1 ami-0b5b6c7f

ap-southeast-1 ami-02eb9350

ap-southeast-2 ami-ab990e91

ap-northeast-1 ami-14d86d15

sa-east-1 ami-0439e619
Table 2: AWSNATAMI Mappings

Key Value

VPC 10.0.0.0/16

NAT1 10.0.11.0/24

NAT2 10.0.12.0/24

Alfresco1 10.0.1.0/28

Alfresco2 10.0.2.0/28

RDS1 10.0.20.0/24

RDS2 10.0.30.0/24
Table 3: SubnetConfig Mappings

Amazon VPC and Subnet Setup
The first step that the AWS CloudFormation service takes when it executes the template is to create a virtual private
cloud (VPC) and the subnets. (All the following steps are in the Resources section of the template.)

This launches a resource of the type AWS::EC2::VPC.

"VPC" : {

 "Type" : "AWS::EC2::VPC",

 "Properties" : {

 "CidrBlock" : { "Fn::FindInMap" : ["SubnetConfig", "VPC", "CIDR"]},

 "Tags" : [

 {"Key" : "Application", "Value" : "Alfresco Cluster behind ELB with S3 for

shared storage and RDS (mySQL) for database" }

]

 }

 }

Notice that for the “CidrBlock” property the template uses a built-in function called FindInMap that allows the AWS
CloudFormation service to look up the value at runtime from the Mappings section.

Next the template creates the Internet Gateway and attaches it to the VPC. This is required to allow instances inside the
VPC to access the Internet and to allow outside users to access resources within the VPC.

 "InternetGateway" : {

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-vpc.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-findinmap.html

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 7 of 31

 "Type" : "AWS::EC2::InternetGateway"

 },

 "AttachGateway" : {

 "Type" : "AWS::EC2::VPCGatewayAttachment",

 "Properties" : {

 "VpcId" : { "Ref" : "VPC" },

 "InternetGatewayId" : { "Ref" : "InternetGateway" }

 }

 }

Next the template creates the subnets. Six subnets are created, three in each of the two Availability Zones.

 "AlfrescoSubnet" : {

 "Type" : "AWS::EC2::Subnet",

 "Properties" : {

 "VpcId" : { "Ref" : "VPC" },

 "CidrBlock" : { "Fn::FindInMap" : ["SubnetConfig", "Alfresco1", "CIDR"]},

 "Tags" : [

 {"Key" : "Application", "Value" : "Alfresco" },

 {"Key" : "Network", "Value" : "Private" }

],

 "AvailabilityZone" : { "Ref" : "AZ1"}

 }

 },

Notice in the above subnet code that we again leverage the FindInMap function to determine the CidrBlock associated
with this subnet. This allows us to change the IP CIDR block ranges easily without needing to ensure that all references
to the previous setting were changed. Additionally we use the “Ref” feature to reference a parameter that was supplied
by the user to determine which Availability Zone this subnet should be placed in. Lastly we add some Tags that allow us
to add information about this subnet to its metadata. These tags can be leveraged by management applications used in
conjunction with Resource-Level Permissions for EC2. The remaining subnets have the same structure as the one above
and are shown below.

 "AlfrescoSubnet2" : {

 "Type" : "AWS::EC2::Subnet",

 "Properties" : {

 "VpcId" : { "Ref" : "VPC" },

 "CidrBlock" : { "Fn::FindInMap" : ["SubnetConfig", "Alfresco2", "CIDR"]},

 "Tags" : [

 {"Key" : "Application", "Value" : "Alfresco" },

 {"Key" : "Network", "Value" : "Private" }

],

 "AvailabilityZone" : { "Ref" : "AZ2"}

 }

 },

 "NATSubnet" : {

 "Type" : "AWS::EC2::Subnet",

 "Properties" : {

 "VpcId" : { "Ref" : "VPC" },

 "CidrBlock" : { "Fn::FindInMap" : ["SubnetConfig", "NAT1", "CIDR"]},

 "Tags" : [

 {"Key" : "Application", "Value" : "NAT" },

 {"Key" : "Network", "Value" : "Public" }

],

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-internet-gateway.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-vpc-gateway-attachment.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-subnet.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-ref.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-tags.html
http://blogs.aws.amazon.com/security/post/Tx29HCT3ABL7LP3/Resource-level-Permissions-for-EC2-Controlling-Management-Access-on-Specific-Ins

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 8 of 31

 "AvailabilityZone" : { "Ref" : "AZ1"}

 }

 },

 "NATSubnet2" : {

 "Type" : "AWS::EC2::Subnet",

 "Properties" : {

 "VpcId" : { "Ref" : "VPC" },

 "CidrBlock" : { "Fn::FindInMap" : ["SubnetConfig", "NAT2", "CIDR"]},

 "Tags" : [

 {"Key" : "Application", "Value" : "NAT" },

 {"Key" : "Network", "Value" : "Public" }

],

 "AvailabilityZone" : { "Ref" : "AZ2"}

 }

 },

 "RDSSubnet" : {

 "Type" : "AWS::EC2::Subnet",

 "Properties" : {

 "VpcId" : { "Ref" : "VPC" },

 "CidrBlock" : { "Fn::FindInMap" : ["SubnetConfig", "RDS1", "CIDR"]},

 "Tags" : [

 {"Key" : "Application", "Value" : "RDS" },

 {"Key" : "Network", "Value" : "Private" }

],

 "AvailabilityZone" : { "Ref" : "AZ1"}

 }

 },

 "RDSSubnet2" : {

 "Type" : "AWS::EC2::Subnet",

 "Properties" : {

 "VpcId" : { "Ref" : "VPC" },

 "CidrBlock" : { "Fn::FindInMap" : ["SubnetConfig", "RDS2", "CIDR"]},

 "Tags" : [

 {"Key" : "Application", "Value" : "RDS" },

 {"Key" : "Network", "Value" : "Private" }

],

 "AvailabilityZone" : { "Ref" : "AZ2"}

 }

 }

NAT Instances
The template creates two NAT instances, one for each Availability Zones. The NAT instances allow instances in private
subnets to access the Internet. In the AWS CloudFormation template, the NAT instances are described using several
different components. The first is an Elastic IP (EIP):

"NATEIP" :

 {

 "Type" : "AWS::EC2::EIP",

 "Properties" :

 { "Domain" : "vpc" }

 }

This is followed by the security group that will be used:

"NATSecurityGroup" : {

 "Type" : "AWS::EC2::SecurityGroup",

 "Properties" : {

 "GroupDescription" : "Enable internal access to the NAT device",

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-eip.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-security-group.html

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 9 of 31

 "VpcId" : { "Ref" : "VPC" },

 "SecurityGroupIngress" : [

 { "IpProtocol" : "tcp", "FromPort" : "80", "ToPort" : "80", "CidrIp" : {

"Fn::FindInMap" : ["SubnetConfig", "VPC", "CIDR"]} } ,

 { "IpProtocol" : "tcp", "FromPort" : "443", "ToPort" : "443", "CidrIp" : {

"Fn::FindInMap" : ["SubnetConfig", "VPC", "CIDR"]} } ,

 { "IpProtocol" : "tcp", "FromPort" : "22", "ToPort" : "22", "CidrIp" : {

"Ref" : "SSHFrom" }}],

 "SecurityGroupEgress" : [

 { "IpProtocol" : "tcp", "FromPort" : "80", "ToPort" : "80", "CidrIp" :

"0.0.0.0/0" } ,

 { "IpProtocol" : "tcp", "FromPort" : "443", "ToPort" : "443", "CidrIp" :

"0.0.0.0/0" } ,

 { "IpProtocol" : "tcp", "FromPort" : "22", "ToPort" : "22", "CidrIp" : {

"Fn::FindInMap" : ["SubnetConfig", "Alfresco2", "CIDR"]} } ,

 { "IpProtocol" : "tcp", "FromPort" : "22", "ToPort" : "22", "CidrIp" : {

"Fn::FindInMap" : ["SubnetConfig", "Alfresco1", "CIDR"]} }]

 }

 }

Notice that the above security group uses both ingress and egress rules. This is done to control what type of traffic the
instance will act as a NAT instance for. Specifically, the above rules only allow HTTP and HTTPS traffic from within the
VPC to be forwarded by the NAT instance. Additionally, the NAT instances act as bastion hosts in this deployment and
are used when an administrator needs to SSH to one of the Alfresco servers.

Next we create the Elastic Network Interface (ENI) to use for the NAT instance and associate the previously created EIP
with this interface.

"NATInterface" :

 {

 "Type" : "AWS::EC2::NetworkInterface",

 "Properties" : {

 "SubnetId" : { "Ref" : "NATSubnet" },

 "Description" :"External interface for the NAT instance in AZ1",

 "GroupSet" : [{"Ref" : "NATSecurityGroup"}],

 "SourceDestCheck" : "false",

 "Tags" : [{"Key" : "Network", "Value" : "Public"}]

 }

 }

 "AssociateInterfaceNAT1" :

 {

 "Type" : "AWS::EC2::EIPAssociation",

 "Properties" :

 {

 "AllocationId" : { "Fn::GetAtt" : ["NATEIP", "AllocationId"]},

 "NetworkInterfaceId" : { "Ref" : "NATInterface" }

 }

 }

One key step that is taken in the creation of the ENI for NAT instances is disabling the source/destination check. This is
needed because by default an Amazon EC2 instance must be either the source or the destination of any traffic it sends
or receives. Since a NAT instance sends and receives traffic for which it is not the source or destination, this check must
be disabled.

Now, with the dependencies created, we can create the NAT instances:

 "NATInstance" : {

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-network-interface.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-network-interface.html#cfn-awsec2networkinterface-sourcedestcheck

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 10 of 31

 "Type" : "AWS::EC2::Instance",

 "Properties" : {

 "Tags" :

 [

 {"Key" : "Name" ,"Value" : "NAT Instance" }

],

 "InstanceType" : { "Ref" : "NATInstanceType" },

 "KeyName" : { "Ref" : "KeyName" },

 "NetworkInterfaces" : [{ "NetworkInterfaceId" : {"Ref" :

"NATInterface"}, "DeviceIndex" : "0" }],

 "ImageId" : { "Fn::FindInMap" : ["AWSNATAMI", { "Ref" : "AWS::Region" },

"AMI"]}

 }

 }

This process is repeated for the second NAT instance, though they will both share the same security group.

"NATEIP2" :

 {

 "Type" : "AWS::EC2::EIP",

 "Properties" :

 { "Domain" : "vpc" }

 },

"NATInterface2" :

 {

 "Type" : "AWS::EC2::NetworkInterface",

 "Properties" : {

 "SubnetId" : { "Ref" : "NATSubnet2" },

 "Description" :"External interface for the NAT instance in AZ1",

 "GroupSet" : [{"Ref" : "NATSecurityGroup"}],

 "SourceDestCheck" : "false",

 "Tags" : [{"Key" : "Network", "Value" : "Public"}]

 }

 },

"AssociateInterfaceNAT2" :

 {

 "Type" : "AWS::EC2::EIPAssociation",

 "Properties" :

 {

 "AllocationId" : { "Fn::GetAtt" : ["NATEIP2", "AllocationId"]},

 "NetworkInterfaceId" : { "Ref" : "NATInterface2" }

 }

 },

"NATInstance2" : {

 "Type" : "AWS::EC2::Instance",

 "Properties" : {

 "Tags" :

 [

 {"Key" : "Name" ,"Value" : "NAT Instance" }

],

 "InstanceType" : { "Ref" : "NATInstanceType" },

 "KeyName" : { "Ref" : "KeyName" },

 "NetworkInterfaces" : [{ "NetworkInterfaceId" : {"Ref" :

"NATInterface2"}, "DeviceIndex" : "0" }],

 "ImageId" : { "Fn::FindInMap" : ["AWSNATAMI", { "Ref" : "AWS::Region" },

"AMI"]}

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-instance.html

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 11 of 31

 }

 }

Elastic Load Balancer
An Elastic Load Balancer (ELB) is used to distribute traffic amongst instances in the Alfresco cluster. Creating the ELB
using the template consists of two steps. First we create the security group that defines which traffic the ELB should
accept, and then we create the ELB itself.

"ELBSecurityGroup" : {

 "Type" : "AWS::EC2::SecurityGroup",

 "Properties" : {

 "GroupDescription" : "Allow access to the ELB",

 "VpcId" : { "Ref" : "VPC" },

 "SecurityGroupIngress" :

 [

 { "IpProtocol" : "tcp", "FromPort" : "80", "ToPort" : "80", "CidrIp" :

"0.0.0.0/0"},

 { "IpProtocol" : "tcp", "FromPort" : "8080", "ToPort" : "8080",

"CidrIp" : "0.0.0.0/0"}

],

 "SecurityGroupEgress" :

 [

 {"IpProtocol" : "tcp", "FromPort" : "8080", "ToPort" : "8080",

"CidrIp" : { "Fn::FindInMap" : ["SubnetConfig", "Alfresco1", "CIDR"]} },

 {"IpProtocol" : "tcp", "FromPort" : "8080", "ToPort" : "8080",

"CidrIp" : { "Fn::FindInMap" : ["SubnetConfig", "Alfresco2", "CIDR"]} },

 {"IpProtocol" : "tcp", "FromPort" : "7070", "ToPort" : "7070",

"CidrIp" : { "Fn::FindInMap" : ["SubnetConfig", "Alfresco1", "CIDR"]} },

 {"IpProtocol" : "tcp", "FromPort" : "7070", "ToPort" : "7070",

"CidrIp" : { "Fn::FindInMap" : ["SubnetConfig", "Alfresco2", "CIDR"]} }

]

 }

 }

Notice again we are using both ingress and egress rules, but also that we have different ports for ingress than egress.
This is because we are accepting traffic on 80 and 8080 externally, but as shown in the following ELB configuration, we
forward the traffic to alternate ports. This is because the TCP/7070 port that is used by Alfresco for the SharePoint
Protocol might be blocked as a non-standard port by many enterprise firewalls.

 "ElasticLoadBalancer" : {

 "Type" : "AWS::ElasticLoadBalancing::LoadBalancer",

 "Properties" : {

 "Subnets" : [{ "Ref" : "NATSubnet" } , { "Ref" : "NATSubnet2" }],

 "SecurityGroups" : [{ "Ref" : "ELBSecurityGroup"}],

 "AppCookieStickinessPolicy" : [{ "CookieName" : "jsessionid", "PolicyName" :

"AlfrescoCluster" }],

 "Listeners" :

 [

 {

 "LoadBalancerPort" : "80",

 "InstancePort" : "8080" ,

 "Protocol" : "HTTP",

 "PolicyNames" : ["AlfrescoCluster"]

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-security-group.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 12 of 31

 },

 {

 "LoadBalancerPort" : "8080",

 "InstancePort" : "7070" ,

 "Protocol" : "HTTP",

 "PolicyNames" : ["AlfrescoCluster"]

 }

],

 "HealthCheck" : {

 "Target" : { "Fn::Join" : ["", ["HTTP:", "8080" ,

"/alfresco/faces/jsp/dashboards/container.jsp"]]},

 "HealthyThreshold" : "2",

 "UnhealthyThreshold" : "3",

 "Interval" : "30",

 "Timeout" : "3"

 }

 }

}

In the preceding code you can see we have only enabled HTTP and not HTTPS. To enable HTTPS on the ELB you must
provide your SSL certificate and private key. Do this using the Identity and Access Management (IAM) service, which is
beyond the scope of this guide. Information on enabling SSL for ELB can be found here. In addition to the listeners, we
also configured both a cookie stickiness policy and a health check. The cookie stickiness policy instructs the ELB to use
the “jsessionid” cookie that is created by the Tomcat server to stick a particular client to a single Alfresco instance,
though if that instance fails, traffic is forwarded to an alternate server. The health check is used as part of the Auto
Scaling service to identify failed instances. Based on the settings above, the ELB requests the
"/alfresco/faces/jsp/dashboards/container.jsp” page on port 8080 every 30 seconds. A request is considered successful
if the server returns an HTTP 200 (OK). If an instance returns anything other than an HTTP 200, or if the timeout of three
seconds is reached, it's considered an unsuccessful request. Instances that fail the health check three consecutive times
are considered unhealthy and removed from the load balancer.

Route tables and Network ACLs
In VPC route tables and network ACLs are associated with subnets to provide routing information and stateless filtering
of traffic into and out of a subnet. By default, a VPC will be created with a route table that has a single rule defining the
entire VPC address space as a “local” route, meaning that all subnets within a VPC are reachable from one another. We
add three additional route tables. Their use is described below.

First, we need a route table for our public subnets. Because the VPC Internet Gateway is a regional construct, we can use
this same table for both of our public subnets.

"PublicRouteTable" : {

 "Type" : "AWS::EC2::RouteTable",

 "Properties" : {

 "VpcId" : {"Ref" : "VPC"},

 "Tags" :[{"Key" : "Application", "Value" : "ELB and NAT Instance" }]

 }

 },

 "PublicRoute" : {

 "Type" : "AWS::EC2::Route",

 "Properties" : {

 "RouteTableId" : { "Ref" : "PublicRouteTable" },

http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingServerCerts.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_ACLs.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-route-table.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-route.html

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 13 of 31

 "DestinationCidrBlock" : "0.0.0.0/0",

 "GatewayId" : { "Ref" : "InternetGateway" }

 }

 }

The following route tables are used for the Alfresco instances. Each Availability Zone has its own route table, because we
direct outbound Internet traffic to the NAT instance in the same Availability Zone as the Alfresco instance.

"AlfrescoRouteTable" : {

 "Type" : "AWS::EC2::RouteTable",

 "Properties" : {

 "VpcId" : {"Ref" : "VPC"},

 "Tags" :[{"Key" : "Application", "Value" : "Alfresco" }]

 }

 },

"AlfrescoRoute" : {

 "Type" : "AWS::EC2::Route",

 "Properties" : {

 "RouteTableId" : { "Ref" : "AlfrescoRouteTable" },

 "DestinationCidrBlock" : "0.0.0.0/0",

 "InstanceId" : { "Ref" : "NATInstance" }

 }

 },

"AlfrescoRouteTable2" : {

 "Type" : "AWS::EC2::RouteTable",

 "Properties" : {

 "VpcId" : {"Ref" : "VPC"},

 "Tags" :[{"Key" : "Application", "Value" : "Alfresco" }]

 }

 },

"AlfrescoRoute2" : {

 "Type" : "AWS::EC2::Route",

 "Properties" : {

 "RouteTableId" : { "Ref" : "AlfrescoRouteTable2" },

 "DestinationCidrBlock" : "0.0.0.0/0",

 "InstanceId" : { "Ref" : "NATInstance2" }

 }

 }

The above route tables are then associated with the different subnets using the following code:

 "PublicSubnetRouteTableAssociation" : {

 "Type" : "AWS::EC2::SubnetRouteTableAssociation",

 "Properties" : {

 "SubnetId" : { "Ref" : "NATSubnet" },

 "RouteTableId" : { "Ref" : "PublicRouteTable" }

 }

 },

 "PublicSubnetRouteTableAssociation2" : {

 "Type" : "AWS::EC2::SubnetRouteTableAssociation",

 "Properties" : {

 "SubnetId" : { "Ref" : "NATSubnet2" },

 "RouteTableId" : { "Ref" : "PublicRouteTable" }

 }

 },

 "AlfrescoSubnetRouteTableAssociation" : {

 "Type" : "AWS::EC2::SubnetRouteTableAssociation",

 "Properties" : {

 "SubnetId" : { "Ref" : "AlfrescoSubnet" },

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 14 of 31

 "RouteTableId" : { "Ref" : "AlfrescoRouteTable" }

 }

 },

 "AlfrescoSubnetRouteTableAssociation2" : {

 "Type" : "AWS::EC2::SubnetRouteTableAssociation",

 "Properties" : {

 "SubnetId" : { "Ref" : "AlfrescoSubnet2" },

 "RouteTableId" : { "Ref" : "AlfrescoRouteTable2" }

 }

 }

Creating a network ACL adds an optional layer of security in addition to security groups. ACLs are used to restrict the
type of traffic that one subnet can send to another. While we use security groups for most filtering, the Amazon RDS
subnet has been configured with an ACL to only accept MySQL traffic (TCP/3306) from the two Alfresco subnets and not
from the public subnet.

 "RDSNetworkAcl" : {

 "Type" : "AWS::EC2::NetworkAcl",

 "Properties" : {

 "VpcId" : {"Ref" : "VPC"},

 "Tags" : [

 {"Key" : "Application", "Value" : "RDS Instance (mySQL)" },

 {"Key" : "Network", "Value" : "Private" }

]

 }

 },

 "InboundRDSNetworkAclEntry" : {

 "Type" : "AWS::EC2::NetworkAclEntry",

 "Properties" : {

 "NetworkAclId" : {"Ref" : "RDSNetworkAcl"},

 "RuleNumber" : "100",

 "Protocol" : "6",

 "RuleAction" : "allow",

 "Egress" : "false",

 "CidrBlock" : { "Fn::FindInMap" : ["SubnetConfig", "Alfresco1", "CIDR"]},

 "PortRange" : {"From" : "3306", "To" : "3306"}

 }

 },

 "InboundRDSNetworkAclEntry2" : {

 "Type" : "AWS::EC2::NetworkAclEntry",

 "Properties" : {

 "NetworkAclId" : {"Ref" : "RDSNetworkAcl"},

 "RuleNumber" : "101",

 "Protocol" : "6",

 "RuleAction" : "allow",

 "Egress" : "false",

 "CidrBlock" : { "Fn::FindInMap" : ["SubnetConfig", "Alfresco2", "CIDR"]},

 "PortRange" : {"From" : "3306", "To" : "3306"}

 }

 },

 "OutBoundRDSNetworkAclEntry" : {

 "Type" : "AWS::EC2::NetworkAclEntry",

 "Properties" : {

 "NetworkAclId" : {"Ref" : "RDSNetworkAcl"},

 "RuleNumber" : "101",

 "Protocol" : "6",

 "RuleAction" : "allow",

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-network-acl.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-network-acl-entry.html

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 15 of 31

 "Egress" : "true",

 "CidrBlock" : "0.0.0.0/0",

 "PortRange" : {"From" : "0", "To" : "65535"}

 }

 },

 "RDSSubnetNetworkAclAssociation" : {

 "Type" : "AWS::EC2::SubnetNetworkAclAssociation",

 "Properties" : {

 "SubnetId" : { "Ref" : "RDSSubnet" },

 "NetworkAclId" : { "Ref" : "RDSNetworkAcl" }

 }

 },

 "RDSSubnetNetworkAclAssociation2" : {

 "Type" : "AWS::EC2::SubnetNetworkAclAssociation",

 "Properties" : {

 "SubnetId" : { "Ref" : "RDSSubnet2" },

 "NetworkAclId" : { "Ref" : "RDSNetworkAcl" }

 }

 }

The Alfresco and public subnets primarily use security groups for network filtering. At the network ACL layer we are only
imposing the restriction that traffic be TCP. Further ingress and egress filtering takes place using security groups.

 "PublicNetworkAcl" : {

 "Type" : "AWS::EC2::NetworkAcl",

 "Properties" : {

 "VpcId" : {"Ref" : "VPC"},

 "Tags" : [

 {"Key" : "Application", "Value" : "ELB and NAT Instance" },

 {"Key" : "Network", "Value" : "Public" }

]

 }

 },

 "InboundPublicNetworkAclEntry" : {

 "Type" : "AWS::EC2::NetworkAclEntry",

 "Properties" : {

 "NetworkAclId" : {"Ref" : "PublicNetworkAcl"},

 "RuleNumber" : "100",

 "Protocol" : "6",

 "RuleAction" : "allow",

 "Egress" : "false",

 "CidrBlock" : "0.0.0.0/0",

 "PortRange" : {"From" : "0", "To" : "65535"}

 }

 },

 "OutBoundPublicNetworkAclEntry" : {

 "Type" : "AWS::EC2::NetworkAclEntry",

 "Properties" : {

 "NetworkAclId" : {"Ref" : "PublicNetworkAcl"},

 "RuleNumber" : "101",

 "Protocol" : "6",

 "RuleAction" : "allow",

 "Egress" : "true",

 "CidrBlock" : "0.0.0.0/0",

 "PortRange" : {"From" : "0", "To" : "65535"}

 }

 },

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 16 of 31

 "AlfrescoSubnetNetworkAclAssociation" : {

 "Type" : "AWS::EC2::SubnetNetworkAclAssociation",

 "Properties" : {

 "SubnetId" : { "Ref" : "AlfrescoSubnet" },

 "NetworkAclId" : { "Ref" : "PublicNetworkAcl" }

 }

 },

 "AlfrescoSubnetNetworkAclAssociation2" : {

 "Type" : "AWS::EC2::SubnetNetworkAclAssociation",

 "Properties" : {

 "SubnetId" : { "Ref" : "AlfrescoSubnet2" },

 "NetworkAclId" : { "Ref" : "PublicNetworkAcl" }

 }

 },

 "PublicSubnetNetworkAclAssociation" : {

 "Type" : "AWS::EC2::SubnetNetworkAclAssociation",

 "Properties" : {

 "SubnetId" : { "Ref" : "NATSubnet" },

 "NetworkAclId" : { "Ref" : "PublicNetworkAcl" }

 }

 },

 "PublicSubnetNetworkAclAssociation2" : {

 "Type" : "AWS::EC2::SubnetNetworkAclAssociation",

 "Properties" : {

 "SubnetId" : { "Ref" : "NATSubnet2" },

 "NetworkAclId" : { "Ref" : "PublicNetworkAcl" }

 }

 }

Identity and Access Management (IAM) Configuration
Several points within the deployment require AWS APIs. An example is accessing the Amazon S3 bucket by the Alfresco
instances to store and retrieve objects or configure the Auto Scaling service. To provide access to the instances, we use
two mechanisms: IAM Roles for EC2 Instances and IAM user credentials. We also create two separate IAM Roles, one
used during the setup and configuration steps, and one used by the resulting instances. This is because, during setup, we
need to perform some configuration steps that are only needed during the initial setup.

The Setup Role is associated with the initial setup instance that is created later. This instance is used to build a custom
AMI that has Alfresco installed and configured for the cluster. It is also used to create the Auto Scaling configuration as
well as some Amazon CloudWatch metrics that can be used to monitor the deployment.

 "SetupRole" : {

 "Type" : "AWS::IAM::Role",

 "Properties": {

 "AssumeRolePolicyDocument": {

 "Statement": [{

 "Effect": "Allow",

 "Principal": {

 "Service": ["ec2.amazonaws.com"] },

 "Action": ["sts:AssumeRole"]

 }]

 },

 "Path": "/",

 "Policies": [{

 "PolicyName": "AlfrescoSetup",

 "PolicyDocument": {

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/UsingIAM.html#UsingIAMrolesWithAmazonEC2Instances
http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_SettingUpUser.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-role.html

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 17 of 31

 "Statement": [{

 "Effect" : "Allow",

 "Action" : "cloudformation:DescribeStackResource",

 "Resource" : "*"

 },

 {

 "Effect" : "Allow",

 "Action" :["EC2:Describe*", "EC2:CreateImage",

"ec2:TerminateInstances"],

 "Resource" : "*"

 },

 {

 "Effect" : "Allow",

 "Action" :

"elasticloadbalancing:DescribeLoadBalancers",

 "Resource" : "*"

 },

 {

 "Effect" : "Allow",

 "Action" :["autoscaling:create*",

"autoscaling:put*", "autoscaling:DescribePolicies"],

 "Resource" : "*"

 },

 {

 "Effect" : "Allow",

 "Action" : "iam:PassRole",

 "Resource" : {"Fn::GetAtt" : ["AlfrescoRole", "Arn"]

}

 },

 {

 "Effect" : "Allow",

 "Action" :

["cloudwatch:PutMetricData","cloudwatch:EnableAlarmActions", "cloudwatch:PutMetricAlarm"

],

 "Resource" : "*"

 },

 {

 "Effect" : "Allow",

 "Action" : ["s3:GetObject", "s3:PutObject",

"s3:DeleteObject", "s3:ListBucket", "s3:Get*","s3:List*"],

 "Resource" : { "Fn::Join" : ["", ["arn:aws:s3:::",

{"Ref" : "S3Bucket"}, "/*"]]}

 },

 {

 "Effect" : "Allow",

 "Action" : ["s3:List*"],

 "Resource" : "*"

 }

]

 }

 }

]}

 },

 "SetupRoleProfile" : {

 "Type": "AWS::IAM::InstanceProfile",

 "Properties": {

 "Path": "/",

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 18 of 31

 "Roles": [{ "Ref": "SetupRole"}]

 }

 }

After the cluster is built and running, the Alfresco instances requires access to some APIs, but not to the extent that was
required during the setup phase, so a second role with fewer permissions is created and used in the Auto Scaling launch
configuration.

 "AlfrescoRole" : {

 "Type" : "AWS::IAM::Role",

 "Properties": {

 "AssumeRolePolicyDocument": {

 "Statement": [{

 "Effect": "Allow",

 "Principal": {

 "Service": ["ec2.amazonaws.com"] },

 "Action": ["sts:AssumeRole"]

 }]

 },

 "Path": "/",

 "Policies": [{

 "PolicyName": "AlfrescoCluster",

 "PolicyDocument": {

 "Statement": [{

 "Effect" : "Allow",

 "Action" : "cloudformation:DescribeStackResource",

 "Resource" : "*"

 },

 {

 "Effect" : "Allow",

 "Action" : "EC2:Describe*",

 "Resource" : "*"

 },

 {

 "Effect" : "Allow",

 "Action" : "cloudwatch:PutMetricData",

 "Resource" : "*"

 },

 {

 "Effect" : "Allow",

 "Action" : ["s3:GetObject", "s3:PutObject",

"s3:DeleteObject", "s3:ListBucket", "s3:Get*", "s3:CreateBucket", "s3:List*"],

 "Resource" : { "Fn::Join" : ["", ["arn:aws:s3:::",

{"Ref" : "S3Bucket"}, "/*"]]}

 },

 {

 "Effect" : "Allow",

 "Action" : ["s3:List*"],

 "Resource" : "*"

 }

]

 }

 }

]}

 },

 "AlfrescoRoleProfile" : {

 "Type": "AWS::IAM::InstanceProfile",

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 19 of 31

 "Properties": {

 "Path": "/",

 "Roles": [{ "Ref": "AlfrescoRole"}]

 }

 }

Finally, some of the components used in the deployment do not support IAM Roles for Amazon EC2 Instances and must
have a specific IAM user access key and secret access key provided. For these components, an IAM user and associated
API credentials are created.

"AlfrescoUser" : {

 "Type" : "AWS::IAM::User",

 "Properties" : {

 "Policies": [{

 "PolicyName": "cfn-and-s3",

 "PolicyDocument" : {

 "Statement": [{

 "Effect" : "Allow",

 "Action" : "cloudformation:DescribeStackResource",

 "Resource" : "*"

 },

 {

 "Effect" : "Allow",

 "Action" : "EC2:Describe*",

 "Resource" : "*"

 },

 {

 "Effect" : "Allow",

 "Action" : "cloudwatch:PutMetricData",

 "Resource" : "*"

 },

 {

 "Effect" : "Allow",

 "Action" : ["s3:GetObject", "s3:PutObject", "s3:DeleteObject",

"s3:ListBucket", "s3:Get*", "s3:List*"],

 "Resource" : { "Fn::Join" : ["", ["arn:aws:s3:::", {"Ref" :

"S3Bucket"}, "/*"]]}

 },

 {

 "Effect" : "Allow",

 "Action" : ["s3:List*"],

 "Resource" : "*"

 }

]

 }

 }

]

 }

 },

 "CFNKeys" : {

 "Type" : "AWS::IAM::AccessKey",

 "Properties" : {

 "UserName" : { "Ref": "AlfrescoUser" }

 }

 }

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-iam-user.html

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 20 of 31

Amazon Relational Database Service (RDS) Configuration
Alfresco requires a database to store metadata about the objects and configuration data. The availability of this
database is critical to the availability of the overall system. As such we have enabled the Multi-AZ feature on the MySQL
Amazon RDS database. Deploying an Amazon RDS database with AWS CloudFormation requires three steps: Setting up
the Amazon RDS instance, the Amazon RDS security group, and a subnet group.

The subnet group below defines which subnets should be used when deploying an Amazon RDS instance. We use the
two subnets we created earlier.

 "RDSDBSubnetGroup" :

 {

 "Type" : "AWS::RDS::DBSubnetGroup",

 "Properties" : {

 "DBSubnetGroupDescription" : "description",

 "SubnetIds" :[{"Ref" : "RDSSubnet"}, {"Ref" : "RDSSubnet2"}]

 }

 },

The Amazon RDS DBSecurityGroup is similar to an Amazon EC2 security group in that it defines from which instances or
IP addresses the Amazon RDS instance should accept traffic. Since we know all our Alfresco instances have the same
security group, we reference that group.

"RDSSecurityGroup" :

 {

 "Type" : "AWS::RDS::DBSecurityGroup",

 "Properties" : {

 "EC2VpcId" : { "Ref" : "VPC" },

 "GroupDescription" : "Allow AlfrescoSecurityGroup access to RDS DB",

 "DBSecurityGroupIngress" : [{

 "EC2SecurityGroupId" : { "Ref" : "AlfrescoSecurityGroup" }

 }

]

 }

 }

Finally, we create the Amazon RDS instances using some of the parameters that were supplied by the user initially and
the subnet and security groups we defined above.

"RDSDBinstance" :

 {

 "Type" : "AWS::RDS::DBInstance",

 "Properties" : {

 "MultiAZ" : "true",

 "DBSecurityGroups" : [{"Ref" : "RDSSecurityGroup"}],

 "AllocatedStorage" : "5",

 "DBInstanceClass" : {"Ref" : "RDSInstanceType"},

 "Engine" : "MySQL",

 "MasterUsername" : {"Ref": "RDSUsername"},

 "MasterUserPassword" : {"Ref":"RDSPassword"},

 "DBSubnetGroupName" : {"Ref" : "RDSDBSubnetGroup"},

 "DBName" : "alfresco"

 },

 "DeletionPolicy" : "Snapshot"

 }

http://aws.amazon.com/rds/mysql/#Multi-AZ
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbsubnet-group.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-rds-security-group.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-rds-database-instance.html

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 21 of 31

The Amazon RDS instance created has a database of 5 GB. This should be sufficient for most deployments because the
database is only storing metadata about the objects. If you find that you are nearing the capacity of your database you
can easily resize it using the steps outlined here.

Alfresco Setup Instance
One key decision in how an environment in AWS is set up is to determine how much of the configuration is performed
dynamically (often referred to as bootstrapping) and how much is pre-configured as part of the AMI. The complete set
of steps to create a new instance for the cluster, including the installation of the Alfresco binaries, takes approximately
12-15 minutes to complete and result in a new node that is ready to accept requests. While this process can be scripted
and performed in an automated fashion after a new instance is created, it takes too much time to install and configure
the new cluster node to be effective in an Auto Scaling environment. For this reason the AWS CloudFormation template
does not include the specific steps to configure Auto Scaling. Instead a setup instance is created that we use to create a
new base AMI with Alfresco preconfigured for this cluster. We configure the Auto Scaling service from within this
instance.

The process of creating this setup instance and ensuring that it has completely set up Auto Scaling takes 12-15 minutes.
We need to make sure that the AWS CloudFormation service waits for this process to complete before continuing, which
we do using WaitConditions, as shown below.

 "WaitForAlfrescoInstall" :

 {

 "Type" : "AWS::CloudFormation::WaitCondition",

 "DependsOn" : "AlfrescoInstance",

 "Properties" : {

 "Handle" : {"Ref" : "WaitForAlfrescoInstallWaitHandle"},

 "Timeout" : "1700"

 }

 },

 "WaitForAlfrescoInstallWaitHandle" :

 {

 "Type" : "AWS::CloudFormation::WaitConditionHandle",

 "Properties" : { }

 }

This pauses processing until the Alfresco instance has completed the installation and configuration of the Alfresco
software and signaled a success back to the AWS CloudFormation service. If no signal is returned in 1700 seconds then
the stack fails and rolls back the deployment.

The setup instance is the largest of all the resources created. This is because we are leveraging both EC2 user-data and
CloudFormation Init Metadata to dynamically create or update the configuration files. Due to the length of this resource,
it has been broken into smaller pieces to make it easier to describe what is being done in each block.

"AlfrescoInstance" : {

 "Type" : "AWS::EC2::Instance",

 "Properties" : {

 "NetworkInterfaces" : [{ "NetworkInterfaceId" : {"Ref" : "AlfrescoInterface"},

"DeviceIndex" : "0" }],

 "KeyName" : { "Ref" : "KeyName" },

 "ImageId" : { "Fn::FindInMap" : ["ALINUXAMI", { "Ref" : "AWS::Region" }, "AMI"

]},

 "IamInstanceProfile" : { "Ref" : "SetupRoleProfile" },

 "BlockDeviceMappings" : [{ "DeviceName" : "/dev/sdh", "VirtualName" :

"ephemeral0" }],

http://aws.amazon.com/articles/Amazon-RDS/2936
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-waitcondition.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-waitconditionhandle.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AESDG-chapter-instancedata.html#instancedata-user-data-retrieval
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-init.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-instance.html

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 22 of 31

 "UserData" : { "Fn::Base64" : { "Fn::Join" : ["", [

 "#!/bin/bash -v\n",

 "yum update -y aws* \n",

 "yum install -y python-boto*\n" ,

 "echo #!/bin/bash -v >> /tmp/configSetup.sh \n",

 "echo export ELB_NAME=", { "Ref" : "ElasticLoadBalancer" }," >>

/tmp/configSetup.sh \n",

 "echo export AWS_REGION=", {"Ref" : "AWS::Region" }, " >> /tmp/configSetup.sh

\n",

 "echo export INSTANCE_ID=$(curl http://169.254.169.254/latest/meta-

data/instance-id) >> /tmp/configSetup.sh \n",

 "echo export KEY_NAME=", { "Ref" : "KeyName" }," >> /tmp/configSetup.sh \n",

 "echo export SEC_GROUP=", { "Ref" : "AlfrescoSecurityGroup" }," >>

/tmp/configSetup.sh \n",

 "echo export INSTANCE_TYPE=", { "Ref" : "AlfrescoInstanceType"}," >>

/tmp/configSetup.sh \n",

 "echo export AZLIST=", { "Ref" : "AZ1"},",", {"Ref" : "AZ2"}," >>

/tmp/configSetup.sh \n",

 "echo export VPC_ZONE=", { "Ref" : "AlfrescoSubnet" }, "," , { "Ref" :

"AlfrescoSubnet2" } , " >> /tmp/configSetup.sh \n",

 "echo export ROLE=", { "Ref" : "AlfrescoRoleProfile" }, " >>

/tmp/configSetup.sh \n",

 "cur=$(hostname | sed 's/-/./g' | cut -c4-18)\n",

 "cur1=$(hostname) \n",

 "echo export CUR=\"$cur\" >> /tmp/configSetup.sh \n",

 "echo export CUR1=\"$cur1\" >> /tmp/configSetup.sh \n",

 "echo sed -i \"s/alfresco.ehcache.rmi.hostname=\"$CUR\"/ /g\"

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties >> /tmp/configSetup.sh \n",

 "echo sed -i \"s/alfresco.jgroups.bind_address=\"$CUR\"/ /g\"

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties >> /tmp/configSetup.sh \n",

 "echo sed -i \"s/$CUR1/ /g\" /etc/hosts \n",

 "echo service alfresco stop >> /tmp/configSetup.sh \n",

 "echo killall java >> /tmp/configSetup.sh \n",

 "echo python /tmp/setupAS.py \\$ELB_NAME \\$AWS_REGION \\$INSTANCE_ID

\\$KEY_NAME \\$SEC_GROUP \\$INSTANCE_TYPE \\$AZLIST \\$VPC_ZONE \\$ROLE>>

/tmp/configSetup.sh \n",

 "chmod 700 /tmp/configSetup.sh \n",

 "/opt/aws/bin/cfn-init -s ", { "Ref" : "AWS::StackName" },

 " -r AlfrescoInstance",

 " --role=", { "Ref" : "SetupRole" },

 " --region ", { "Ref" : "AWS::Region" }, "\n",

 "/home/ec2-user/installAlf.sh\n",

 "mkdir /opt/alfresco/tomcat/webapps/WEB-INF\n",

 "mkdir /opt/alfresco/tomcat/webapps/WEB-INF/lib\n",

 "mv /home/ec2-user/hazelcast-cloud-1.9.4.6.jar

/opt/alfresco/tomcat/webapps/WEB-INF/lib\n",

 "cd /opt/alfresco/tomcat/webapps/\n",

 "zip -u alfresco.war WEB-INF/lib/hazelcast-cloud-1.9.4.6.jar\n",

 "zip -u share.war WEB-INF/lib/hazelcast-cloud-1.9.4.6.jar\n",

 "cd /home/ec2-user\n",

 "sed -i 's/@@HZ_CLUSTER_NAME@@Share/AlfrescoS3Cluster/g' custom-slingshot-

application-context.xml\n",

 "sed -i 's/@@HZ_CLUSTER_PASSWORD@@/AlfrescoS3Cluster/g' custom-slingshot-

application-context.xml\n",

 "sed -i 's/@@AWS_ACCESS_KEY@@/", { "Ref" : "CFNKeys"}, "/g' custom-slingshot-

application-context.xml\n",

 "sed -i 's/@@AWS_SECRET_KEY@@/", {"Fn::GetAtt": ["CFNKeys",

"SecretAccessKey"]}, "/g' custom-slingshot-application-context.xml\n",

 "sed -i 's/@@AWS_REGION@@/", {"Ref" : "AWS::Region"},"/g' custom-slingshot-

application-context.xml\n",

 "sed -i 's/@@AWS_SECURITY_GROUP@@/",{ "Ref" : "AlfrescoSecurityGroup"} , "/g'

custom-slingshot-application-context.xml\n",

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 23 of 31

 "mv /home/ec2-user/hazelcast-ec2.xml

/opt/alfresco/tomcat/shared/classes/alfresco/extension\n",

 "mv /home/ec2-user/cache-context.xmll

/opt/alfresco/tomcat/shared/classes/alfresco/extension\n",

 "mv /home/ec2-user/ehcache-custom.xml

/opt/alfresco/tomcat/shared/classes/alfresco/extension\n",

 "mv /home/ec2-user/custom-slingshot-application-context.xml

/opt/alfresco/tomcat/shared/classes/alfresco/web-extension\n",

 "wget https://s3.amazonaws.com/publisher-bucket/bin/aws-

publisher_install.sh\n",

 "chmod u+x /home/ec2-user/aws-publisher_install.sh\n",

 "/home/ec2-user/aws-publisher_install.sh\n",

 "echo product.code AlfrescoEnterprise > /etc/aws-publisher/cw.conf\n",

 "service aws-publisher stop \n",

 "service alfresco start\n",

 "sleep 330\n",

 "/tmp/configSetup.sh\n",

 "curl -X PUT -H 'Content-Type:' --data-binary '{\"Status\" : \"SUCCESS\",",

 "\"Reason\" : \"The application

Alfresco Enterprise has been installed and started\",",

 "\"UniqueId\" :

\"AlfrescoEnterprise\",",

 "\"Data\" : \"Done\"}' ",

 "\"", {"Ref" : "WaitForAlfrescoInstallWaitHandle"},"\"\n"

]]}},

 "InstanceType" : { "Ref" : "AlfrescoInstanceType" }

 },

The first portion above describes many of the basic features of the instance, such as the AMI ID to use, the Amazon EC2
key pair and the IAM Role to associate with the instance. We also enabled a BlockDeviceMapping for ephemeral0. The
ephemeral storage devices provide non-persistent local storage to the instance. This storage is used for caching within
the Alfresco cluster and is local to the host and is provided without any additional cost. The bulk of the code above is in
the UserData section. We dynamically build out a bash script that will be executed later to perform the Auto Scaling
setup, perform the installation of Alfresco, update configuration documents with both user-provided parameters and
dynamically created API credentials, call the cfn-init service to perform additional bootstrapping, and then finally run the
script to configure Auto Scaling. We do this at runtime because many of the objects being referenced didn’t exist or
were unknown until after the AWS CloudFormation template began to execute.

 "Metadata" : {

 "AWS::CloudFormation::Init" : {

 "config" : {

 "packages" :

 {

 },

 "files" : {

 "/home/ec2-user/installAlf.sh" :

 {

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 24 of 31

 "content" : { "Fn::Join" : ["", [

 "echo enable-

components=alfrescosharepoint,javaalfresco,alfrescowcmqs,openofficecomponent >> /home/ec2-

user/option_file \n",

 "echo disable-components=postgres >> /home/ec2-user/option_file \n",

 "echo prefix=/opt/alfresco >> /home/ec2-user/option_file \n",

 "echo alfresco_admin_password=", {"Ref" : "AlfrescoPassword"}, " >>

/home/ec2-user/option_file\n",

 "echo jdbc_driver=org.gjt.mm.mysql.Driver >> /home/ec2-

user/option_file\n",

 "echo \"jdbc_url=jdbc:mysql://", {"Fn::GetAtt" : ["RDSDBinstance",

"Endpoint.Address"] }, "/alfresco?useUnicode=yes&characterEncoding=UTF-8\" >> /home/ec2-

user/option_file\n",

 "echo jdbc_database=alfresco >> /home/ec2-user/option_file\n",

 "echo jdbc_username=", { "Ref" : "RDSUsername"}, " >> /home/ec2-

user/option_file\n",

 "echo jdbc_password=", { "Ref" : "RDSPassword"}, " >> /home/ec2-

user/option_file\n",

 "echo baseunixservice_install_as_service=1 >> /home/ec2-

user/option_file\n",

 "echo installer-language=en >> /home/ec2-user/option_file\n",

 "echo mode=unattended >> /home/ec2-user/option_file\n",

 "cur=$(hostname | sed 's/-/./g' | cut -c4-18)\n",

 "cur1=$(hostname)\n",

 "echo \"$cur $cur1\" >> /etc/hosts\n",

 "mkdir /mnt/alfresco\n",

 "mkdir /mnt/alfresco/cache\n",

 "chown -R ec2-user:ec2-user /mnt/alfresco\n",

 "mount /dev/sdh /mnt/alfresco/cache\n",

 "cd /home/ec2-user\n",

 "unzip /home/ec2-user/alfresco-s3-connector-1.0.0-5.zip\n",

 "/home/ec2-user/alfresco-enterprise-4.1.3-installer-linux-x64.bin --

optionfile /home/ec2-user/option_file \n",

 "cp /home/ec2-user/alfresco-s3-connector-1.0.0-5.amp /opt/alfresco/amps

\n",

 "cp /home/ec2-user/mysql-connector-java-5.1.22-bin.jar

/opt/alfresco/tomcat/lib \n",

 "sed -i 's/read RESP/ /g' /opt/alfresco/bin/apply_amps.sh \n",

 "sed -i 's/read DUMMY/ /g' /opt/alfresco/bin/apply_amps.sh \n",

 "/opt/alfresco/bin/apply_amps.sh\n",

 "echo s3.accessKey=", { "Ref" : "CFNKeys"}, " >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties \n",

 "echo s3.secretKey=", {"Fn::GetAtt": ["CFNKeys", "SecretAccessKey"]}, "

>> /opt/alfresco/tomcat/shared/classes/alfresco-global.properties \n",

 "echo s3.bucketName=", {"Ref" : "S3Bucket"}, " >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties \n",

 "echo \"alfresco.jgroups.bind_address=$cur\" >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties \n",

 "echo \"alfresco.ehcache.rmi.hostname=$cur\" >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties \n",

 "echo alfresco.cluster.name=AlfrescoS3Cluster >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo index.reindexMissingContent.cronExpression=0 \"*\" \"*\" \"*\" \"*\" ?

>> /opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo alfresco.jgroups.bind_interface=eth0 >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo alfresco.jgroups.defaultProtocol=TCP >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo

alfresco.tcp.initial_hosts=10.0.2.5[7800],10.0.2.6[7800],10.0.2.7[7800],10.0.2.8[7800],10.

0.2.9[7800],10.0.2.10[7800],10.0.2.11[7800],10.0.2.12[7800],10.0.2.13[7800],10.0.2.14[7800

],10.0.1.5[7800],10.0.1.6[7800],10.0.1.7[7800],10.0.1.8[7800],10.0.1.9[7800],10.0.1.10[780

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 25 of 31

0],10.0.1.11[7800],10.0.1.12[7800],10.0.1.13[7800],10.0.1.14[7800] >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties \n",

 "echo dir.cachedcontent=/mnt/alfresco/cache >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

"echo system.content.caching.cacheOnInbound=true >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo system.content.caching.maxDeleteWatchCount=1 >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo system.content.caching.contentCleanup.cronExpression=0 0 3 \"*\" \"*\" ? >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo system.content.caching.timeToLiveSeconds=0 >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo system.content.caching.timeToIdleSeconds=60 >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo system.content.caching.maxElementsInMemory=5000 >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo system.content.caching.maxElementsOnDisk=10000 >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo system.content.caching.minFileAgeInMillis=2000 >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo system.content.caching.maxUsageMB=10240 >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo system.content.caching.maxFileSizeMB=0 >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo alfresco.hazelcast.configLocation=classpath:alfresco/extension/hazelcast-

ec2.xml >> /opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo alfresco.hazelcast.password=AlfrescoS3Cluster >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo alfresco.hazelcast.protocol=ec2 >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo alfresco.hazelcast.ec2.accesskey=", { "Ref" : "CFNKeys"}, " >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo alfresco.hazelcast.ec2.secretkey=", {"Fn::GetAtt": ["CFNKeys",

"SecretAccessKey"]}, " >> /opt/alfresco/tomcat/shared/classes/alfresco-

global.properties\n",

 "echo alfresco.hazelcast.ec2.region=", {"Ref" : "AWS::Region"}, " >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo alfresco.hazelcast.ec2.securitygroup=",{ "Ref" : "AlfrescoSecurityGroup"} , "

>> /opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo alfresco.hazelcast.ec2.tagkey=Name >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo alfresco.hazelcast.ec2.tagvalue=AlfrescoServer >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo alfresco.host=", { "Fn::GetAtt" : ["ElasticLoadBalancer" , "DNSName"] }, "

>> /opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo alfresco.port=80 >> /opt/alfresco/tomcat/shared/classes/alfresco-

global.properties\n",

 "echo alfresco.protocol=http >> /opt/alfresco/tomcat/shared/classes/alfresco-

global.properties\n",

 "echo share.host=", { "Fn::GetAtt" : ["ElasticLoadBalancer" , "DNSName"] }, " >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo share.port=80 >> /opt/alfresco/tomcat/shared/classes/alfresco-

global.properties\n",

 "echo share.protocol=http >> /opt/alfresco/tomcat/shared/classes/alfresco-

global.properties\n",

 "echo vti.server.external.host=", { "Fn::GetAtt" : ["ElasticLoadBalancer" ,

"DNSName"] }, " >> /opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo vti.server.external.port=8080 >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n",

 "echo vti.server.external.protocol=http >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties\n"

]]

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 26 of 31

 },

 "mode" : "000700",

 "owner" : "ec2-user",

 "group" : "ec2-user"

 },

 "/home/ec2-user/alfresco-enterprise-4.1.3-installer-linux-x64.bin" : {

"source" : "http://eu.dl.alfresco.com/release/enterprise/4.1/build-00097/alfresco-

enterprise-4.1.3-installer-linux-x64.bin", "mode" : "000700",

 "owner" : "ec2-user",

 "group" : "ec2-user" },

 "/home/ec2-user/alfresco-s3-connector-1.0.0-5.zip" : { "source" :

"http://eu.dl.alfresco.com/release/enterprise/4.1/build-00097/alfresco-s3-connector-1.0.0-

5.zip", "mode" : "000700",

 "owner" : "ec2-user",

 "group" : "ec2-user"},

 "/home/ec2-user/mysql-connector-java-5.1.22-bin.jar" : { "source" :

"https://s3.amazonaws.com/alfrescoInstaller/mysql-connector-java-5.1.22-bin.jar", "mode"

: "000700",

 "owner" : "ec2-user",

 "group" : "ec2-user"},

 "/home/ec2-user/hazelcast-cloud-1.9.4.6.jar" : { "source" :

"https://s3.amazonaws.com/alfrescoInstaller/hazelcast-cloud-1.9.4.6.jar", "mode" :

"000700",

 "owner" : "ec2-user",

 "group" : "ec2-user"},

 "/home/ec2-user/cache-context.xml" : { "source" :

"https://s3.amazonaws.com/alfrescoInstaller/cache-context.xml", "mode" : "000700",

 "owner" : "ec2-user",

 "group" : "ec2-user"},

 "/home/ec2-user/custom-slingshot-application-context.xml" : { "source" :

"https://s3.amazonaws.com/alfrescoInstaller/custom-slingshot-application-context.xml",

"mode" : "000700",

 "owner" : "ec2-user",

 "group" : "ec2-user"},

 "/home/ec2-user/ehcache-custom.xml" : { "source" :

"https://s3.amazonaws.com/alfrescoInstaller/ehcache-custom.xml", "mode" : "000700",

 "owner" : "ec2-user",

 "group" : "ec2-user"},

 "/home/ec2-user/hazelcast-ec2.xml" : { "source" :

"https://s3.amazonaws.com/alfrescoInstaller/hazelcast-ec2.xml", "mode" : "000700",

 "owner" : "ec2-user",

 "group" : "ec2-user"},

 "/tmp/setupAS.py" : { "source" :

"https://s3.amazonaws.com/alfrescoInstaller/setupAS.py", "mode" : "000700",

 "owner" : "root",

 "group" : "root"}

 }

 }

 }

 }

}

The above section uses CloudFormation Init files section to download the needed installation files and dynamically
update all the required Alfresco configuration files to enable clustering and use Amazon S3 as the shared storage. In
addition to the Alfresco installer, we download several additional components:

 Hazelcast – An in-memory open source clustering implementation for Java

 Alfresco MySQL connector – Allows Alfresco to use MySQL as its database

 Ehcache – Java-based cache

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-init.html

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 27 of 31

 setupAS.py – Python script used to configure Auto Scaling

The setupAS.py script is run as the final step before signaling success back to CloudFormation. The script below first
creates a new AMI from the current running instance. This AMI has Alfresco already installed and configured to act as
part of the cluster. In the event that the cluster is under heavy load, a new instance can be added and ready to accept
requests in only the amount of time required to boot the new instance.

Next the script configures the different components of the Auto Scaling and Amazon CloudWatch services to trigger the
addition and removal of cluster nodes. Additionally the Auto Scaling launch configuration includes information about
which security group new instances will use, as well as the ELB that they will be associated with.

import os

import boto

import sys

import logging

import time

import string

import random

from boto.ec2.connection import EC2Connection

from boto.ec2.autoscale import AutoScaleConnection

from boto.ec2.autoscale import LaunchConfiguration

from boto.ec2.autoscale import AutoScalingGroup

from boto.ec2.autoscale import ScalingPolicy

from boto.ec2.autoscale import Tag

from boto.ec2.cloudwatch import MetricAlarm

Get values from cmd line

ELB_NAME = sys.argv[1]

REGION = sys.argv[2]

INSTANCE = sys.argv[3]

KEY = sys.argv[4]

SECGRP = sys.argv[5]

TYPE = sys.argv[6]

AZLIST = sys.argv[7]

VPC_ZONE = sys.argv[8]

ROLE = sys.argv[9]

#generate random string to append to launch config and AS group names to prevent collisions

randomStr = ''.join(random.choice(string.ascii_uppercase + string.digits) for x in range(6))

asLCstr = 'AlfrescoLC-' + randomStr

asGrpStr = 'AlfrescoGrp-'+ randomStr

#connect to region

conn = boto.ec2.connect_to_region(REGION)

conn_as = boto.ec2.autoscale.connect_to_region(REGION)

#create new image from this running instance

AMIID = conn.create_image(INSTANCE, 'AlfrescoClusterAMI-'+ randomStr, 'Alfreco Cluster AMI for

Autoscaling Group', True)

logging.debug(' AMIID=%s', AMIID)

time.sleep(20)

#setup ephemeral0 for local cache

blockDeviceMap = []

blockDeviceMap.append({'DeviceName':'/dev/sdh', 'VirtualName' : 'ephemeral0'})

#create user-data string

userData = '#!/bin/bash \n cur=$(hostname | sed \'s/-/./g\' | cut -c4-18) \n echo

\"alfresco.jgroups.bind_address=$cur\" >> /opt/alfresco/tomcat/shared/classes/alfresco-

global.properties \n echo \"alfresco.ehcache.rmi.hostname=$cur\" >>

/opt/alfresco/tomcat/shared/classes/alfresco-global.properties \n cur1=$(hostname)\n echo \"$cur $cur1\"

>> /etc/hosts\n'

#create launch configuration and AS group

launchConfig = LaunchConfiguration(name=asLCstr, image_id=AMIID, key_name=KEY, security_groups=[SECGRP],

instance_type=TYPE, instance_monitoring=True, instance_profile_name=ROLE,

block_device_mappings=blockDeviceMap, user_data=userData)

conn_as.create_launch_configuration(launchConfig)

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 28 of 31

time.sleep(20)

autoscaleGroup = AutoScalingGroup(group_name=asGrpStr , load_balancers=[ELB_NAME],

availabilty_zones=[AZLIST], launch_config=launchConfig, vpc_zone_identifier=VPC_ZONE, min_size=2,

max_size=6, health_check_period='360', health_check_type='ELB')

conn_as.create_auto_scaling_group(autoscaleGroup)

#setup tagging for the instances

create a Tag for the austoscale group

as_tag = Tag(key='Name', value = 'Alfresco Server', propagate_at_launch=True, resource_id=asGrpStr)

Add the tag to the autoscale group

conn_as.create_or_update_tags([as_tag])

#create scale up and scale down policies for the autoscale group

scaleUpPolicy = ScalingPolicy(name='alfrescoScaleUp-'+randomStr, adjustment_type='ChangeInCapacity',

as_name=autoscaleGroup.name, scaling_adjustment=2, cooldown=400)

scaleDownPolicy = ScalingPolicy(name='alfrescoScaleDown-'+randomStr, adjustment_type='ChangeInCapacity',

as_name=autoscaleGroup.name, scaling_adjustment=-1, cooldown=400)

conn_as.create_scaling_policy(scaleUpPolicy)

conn_as.create_scaling_policy(scaleDownPolicy)

#redeclare policies to populate the ARN fields

policyResults = conn_as.get_all_policies(as_group=autoscaleGroup.name,

policy_names=[scaleUpPolicy.name])

scaleUpPolicy = policyResults[0]

policyResults = conn_as.get_all_policies(as_group=autoscaleGroup.name,

policy_names=[scaleDownPolicy.name])

scaleDownPolicy = policyResults[0]

#connect to Cloud Watch

cw_conn = boto.ec2.cloudwatch.connect_to_region(REGION)

#create the following alarms: ScaleUp @ Avg CPU >60% over 2 periods OR ELB latency >= 0.5sec. ScaleDown

@ Avg CPU <30% over 2 periods

dimensions = {"AutoScalingGroupName" : autoscaleGroup.name}

dimensions_elb = {"LoadBalancerName" : ELB_NAME}

scaleUpAlarmCPU = MetricAlarm(name='Alfresco-HighCPU', namespace='AWS/EC2',metric='CPUUtilization',

statistic='Average', comparison='>', threshold='60', evaluation_periods=2, period=60, unit='Percent' ,

alarm_actions=[scaleUpPolicy.policy_arn], dimensions=dimensions)

scaleDownAlarmCPU = MetricAlarm(name='Alfresco-LowCPU', namespace='AWS/EC2',metric='CPUUtilization',

statistic='Average', comparison='<', threshold='30', evaluation_periods=2, period=60, unit='Percent',

alarm_actions=[scaleDownPolicy.policy_arn], dimensions=dimensions)

scaleUpAlarmLatency = MetricAlarm(name='Alfresco-HighLatency', namespace='AWS/ELB', metric='Latency',

statistic='Average', comparison='>', threshold='1', evaluation_periods=2, period=60, unit='Seconds',

alarm_actions=[scaleUpPolicy.policy_arn],dimensions=dimensions_elb)

cw_conn.create_alarm(scaleUpAlarmCPU)

cw_conn.create_alarm(scaleDownAlarmCPU)

cw_conn.create_alarm(scaleUpAlarmLatency)

#Terminate this setup instance now that auto-scaling is configured

conn.terminate_instances(INSTANCE)

#done

As the setup instance is terminated, the Auto Scaling service creates new instances based on the AMI just created and
joined to the ELB. Shortly after the instances are launched, the ELB will be in-service and ready to accept requests. The
output parameter of the template shown below includes the URL to your new Alfresco cluster.

"Outputs": {

 "AlfrescoServerOutput": {

 "Description": "URL to the ELB serving the Alfresco cluster",

 "Value": {"Fn::Join" : ["", ["http://", { "Fn::GetAtt" : ["ElasticLoadBalancer" , "DNSName"] }

,"/alfresco"]] }

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 29 of 31

 }

 }

This completes the creation of the Alfresco cluster. After you click on the output link, you can log in to the Alfresco web
interface using the password provided as a parameter when you launched the stack.

Security Group and Network ACL Configuration

The deployment in this implementation guide uses four different security groups and three Network ACLs that were
described above. The table below describes each of the rules.

Elastic Load Balancing Security Group

Direction Source or Destination Protocol/Port Description

Inbound 0.0.0.0/0 TCP/80 Allow inbound HTTP
requests to the elastic
load balancer.

Inbound 0.0.0.0/0 TCP/8080 Allow inbound
SharePoint traffic on
8080.

Outbound 10.0.1.0/28 TCP/7070 SharePoint listener on
Alfresco Instances in
Availability Zone 1

Outbound 10.0.2.0/28 TCP/7070 SharePoint listener on
Alfresco Instances in
Availability Zone 2.

Outbound 10.0.1.0/28 TCP/8080 HTTP listener on
Alfresco instances in
Availability Zone 1.

Outbound 10.0.2.0/28 TCP/8080 HTTP listener on
Alfresco instances in
Availability Zone 2.

Alfresco Security Group

Direction Source or Destination Protocol/Port Description

Inbound Elastic load balancer TCP/8080 Allow inbound HTTP
requests from the
elastic load balancer.

Inbound Elastic load balancer TCP/7070 Allow inbound
SharePoint traffic from
the elastic load

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 30 of 31

balancer.

Inbound 10.0.1.0/28

10.0.2.0/28

TCP/5700-5710 Allow Hazelcast traffic.

Inbound 10.0.1.0/28

10.0.2.0/28

TCP/5800-5810 Alfresco RMI.

Inbound 10.0.1.0/28

10.0.2.0/28

TCP/7800 JGroups cluster port.

Inbound <NAT Instances> TCP/22 Allow SSH only from
either of the two NAT
instances.

Outbound 0.0.0.0 TCP/0-65535 All outbound.

NAT Instances Security Group

Direction Source or Destination Protocol/Port Description

Inbound <SSH From Parameter> TCP/22 Allow SSH from IP
range specified.

Inbound 10.0.0.0/16 TCP/80 Accept HTTP traffic
from instances in the
Amazon VPC.

Inbound 10.0.0.0/16 TCP/443 Accept HTTPS traffic
from instances in the
Amazon VPC.

Outbound 0.0.0.0/0 TCP/80 Outbound HTTP traffic.

Outbound 0.0.0.0/0 TCP/443 Outbound HTTPS
traffic.

Outbound 10.0.1.0/28

10.0.2.0/28

TCP/22 Outbound SSH to
Alfresco instances.

Amazon RDS Security Group

Direction Source or Destination Protocol/Port Description

Inbound Alfresco Security
Group

TCP/3306 Allow MySQL traffic
from Alfresco instances

Amazon Web Services – Alfresco Enterprise on AWS: Implementation Guide October 2013

Page 31 of 31

Outbound 0.0.0.0/0 ALL Allow outbound

Amazon RDS Subnet Network ACL

Direction Source or Destination Protocol/Port Description

Inbound 10.0.1.0/28

10.0.2.0/28

TCP/3306 Allow MySQL traffic
from Alfresco subnets.

Inbound 0.0.0.0/0 ALL Deny all.

Outbound 0.0.0.0/0 TCP Allow all TCP.

Alfresco and NAT Subnet Network ACL

Direction Source or Destination Protocol/Port Description

Inbound 0.0.0.0/0 TCP Allow all TCP.

Outbound 0.0.0.0/0 TCP Allow all TCP.

Further Reading

1. Alfresco Enterprise on AWS: Reference Architecture Whitepaper:
http://media.amazonwebservices.com/AWS_Alfresco_Enterprise_Reference_Architecture.pdf

2. AWS Alfresco Partner Page: http://www.aws-partner-directory.com/PartnerDirectory/PartnerDetail?id=7609

3. Alfresco on AWS: http://www.alfresco.com/aws

4. AWS CloudFormation: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/CHAP_Intro.html

http://media.amazonwebservices.com/AWS_Alfresco_Enterprise_Reference_Architecture.pdf
http://www.aws-partner-directory.com/PartnerDirectory/PartnerDetail?id=7609
http://www.alfresco.com/aws
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/CHAP_Intro.html

